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Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

Under the sponsorship of the ONR contract N00014-90-J-1002 we have published

(18) refereed journal and conference papers.

In high-speed digital circuits, high frequency phenomena affects the characteristics

of the interconnections. Physical discontinuities or nonuniformities in the connections may

cause severe reflections when they can no longer be considered as conducting wires, but

behave as transmission lines and/or waveguides. In multilayered digital circuits, vias con-

stitute one of the most commonly-used class of interconnects. Vias are not good carriers

of high-speed signals. They cause signal distortion and reflections as well as severe degra-

dation in the high frequency components. The analysis and modeling of a single via and

some quasi-static or quasi-TEM analyses of single via configurations have been carried out

previously. To date, the analysis of coupled noise between adjacent vias has received very

little attention. The major reasons include the complexity of multi-via structures and the

difficulty of modeling and analyzing them accurately over a broad frequency range. The

electromagnetic coupling between two adjacent vias in a multilayered integrated circuit is

analyzed by means of equivalent magnetic frill array models incorporated with the even-

and odd-mode approach. Closed-form expressions for the coupled noise on the passive via

are derived. The coupling responses in the frequency domain and crosstalk waveforms in

the time domain for some multilayered via structures are calculated based on these for-

mulas. A 4-layer experimental model is constructed and measurements are taken for the

transmission, reflection, and coupling responses. The measurements show good agreement

with the calculated results over a frequency range of up to 18 GHz.

High frequency digital signals associated with computers and communications equip-
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ment have the potential for electromagnetic interference (EMI). The need for compliance

with the radiated emissions limits established by FCC and other regulatory agencies for

such equipment have led to increased interest in understanding and minimizing EM radia-

tion. As clock speeds increase beyond 100 MHz and edge-rates fall into the sub-nanosecond

range, the EMC engineer is faced with FCC tests for frequencies beyond 1 GHz and the

prospect of increased energy for frequencies in the hundreds of megahertz range. The

modules-on-backplane configuratior is a common assembly scheme for computers. Em-

bedded in these modules and backplane are reference planes which could be as large as

tens of centimeters. The reference planes configuration is of interest because the resonant

frequencies begin in the low hundreds of megahertz, given typical dimensions. The voltage

levels on such reference planes are subject to noise fluctuations (reference noise) originat-

ing from disturbances such as inductive discontinuities at connector pins. The increase in

power requirements and in the number of simultaneous switching circuits is likely to result

in stronger noise sources. A simplified model is used to analyze the modules-on-backplane

configuration. Conducting planes model the modules and the backplane. A generator,

which is positioned at the module and backplane interface, models the inductive voltage,

as a noise source, developed across the module-backplane connector. The finite-difference

time-domain (FD-TD) technique, which is based on the discretization of the Maxwell's

equations, is employed in this analysis. Nodal electric and magnetic fields are computed

on a rectangular grid within a computational domain subject to appropriate boundary and

initial conditions. An absorbing boundary condition is enforced on the outer boundary of

the computational domain and approximately simulates unbounded space. In the imple-

mentation of the FD-TD technique, the areas of concern addressed include the modeling

of the excitation as a coaxial line probe and the use of Prony's method to obtain late

time responses of the fields for highly resonant configurations. Radiation impedances are

obtained from the voltages and currents on the probe and radiation patterns are calculated

using Huygens' principle. Experimental verification is made on physical structures com-
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patible with simulation models. The focus is on correlating computed resonant frequencies

and radiation impedances with those deduced from S-parameter measurements taken on

a network analyzer. Radiation impedances as functions of frequency are presented for

various configurations. Such variations include changing the number of modules and the

dimensions and spacings of modules and backplane and the addition of conducting panels

to model the shielding or enclosure environment. This study provides basic information

pertaining to the acceptability of noise levels in the interconnect environment for EMI-

related considerations. Through the examination of a variety of configurations it will also

affec system-level packaging and assembly decisions.

Millimeter and submillimeter transmission structures are dominated by dielectric

waveguides. At these frequency bands, conventional microstrip trai.nsmission structures

such as microstrip line, coplanar line, slot line and finline all suffer from severe ohmic and

radiation losses. Analytical techniques for studying dielectric waveguide structures include

the full-wave integral equation formulations (both spectral and spatial domain) and the fi-

nite difference time-domain (FDTD) method. Compared to the integral equation methods,

the FDTD method is more straightforward to formulate and provides an alternative path

to analyze both time and frequency domain response in the presence of complex structures

such as discontinuities. In this study, electromagnetic pulse propagation in single and

coupled dielectric rib waveguide embedded in a three-layer stratified dielectric medium is

simulated and analyzed using the FDTD technique. Time domain transient response of a

modulated gaussian pulse is observed in the simulation. We first examine pulse dispersion,

attenuation and coupling characteristics for the transmission line structure. Results are

found to be in good agreement with those obtained from integral equation methods. We

also extend the study to an optical rib waveguide with a bend discontinuity. The FDTD

simulation is used to predict the electromagnetic leakage attributed to the discontinuity.

One of the problems facing the FDTD technique for the dielectric waveguide problem is

the proper absorbing boundary condition. Existing boundary conditions such as the Mur,
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Enquist-Majda condition work best when wave incident angle is normal to the boundary;

which is generally not the case for dielectric waveguides. A comparison between different

conditions will also be presented.

The use of equipment enclosures to shield against emissions and external energy is

a common practice. Efforts range from metal impregnated plastics to thick steel panels

incorporating waveguide design in air vents. The choice of complexity depends on system

performance and application. The question has often been raised as to whether high field

intensities within such enclosures will affect equipment performance. Clearly this is in-

creasingly pertinent in cases of heavy shielding where resonator-like structures with high

quality factors (Q) result. Moreover, in these cases, any energy leakage may be highly

frequency selective with substantial associated field strength. The primary motivation for

studying such structures is that computers are now operating at faster speeds and consum-

ing more power resulting in significantly increased levels of power at higher frequencies.

Also typical metallic enclosure configurations have dimensions which are electrically reso-

nant at frequencies in the hundreds of megahertz range. We focus on the use of resistive

material within the enclosure walls for absorbing some of the contained RF energy, thereby

avoiding high Q enclosures and reducing the likelihood of significant field buildup within

the enclosure. The energy leakage from perforations on the walls is also being considered.

The radiation properties of these structures are observed by varying the number, size and

position of the holes in the enclosure. The finite-difference time-domain (FD-TD) tech-

nique is used in analyzing this problem and the metrics are total radiated power and field

patterns within the enclosure. The excitation sources are line current source for the two-

dimensional models and dipoles for the three-dimensional cases. A Gaussian amplitude

is assumed in order to obtain multifrequency characteristics and to exhibit the resonance

properties of the model. In addition to the radiated power through the apertures, the

power absorbed in the resistive material is also calculated.
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A new method based on the wave transmission matrix is presented to deal with

nonuniform multiconductor line system. This method has not only the ability of han-

dling nonuniformity, but also the advantage of handling nonlinearity efficiently. The wave

transmission matrix is employed to characterize the multiconductor transmission lines and

the telegrapher equations, therefore, can easily be turned into algebraic equations. The

nonuniform transmission line is treated zs many small segments of uniform transmission

lines connected in cascade. The formulation for this method is described in detail. Calcu-

lation approaches are discussed. Numerical results are presented and comparison of them

with previous work confirms the validity of the method.

A macroscopic model is proposed for nonlinear electromagnetic phenomena in super-

conductors. Nonlinear constitutive relations are derived by modifying the linear London's

equations. The superelectron number density as a function of applied macroscopic current

density, ns(J), is derived from a distribution of electron velocities at a certain temperature

T. At temperature T 0 OK, the function ns(J) has a smooth variation near the macro-

scopic critical current density Jc. Agreement has been found between this ns(J, T) model

and the temperature dependence of ns in the two-fluid model. The nonlinear conductivities

os(J) and an(J) are obtained from the London's equation with the modified ns(J) func-

tion. Nonlinear resistance R(I), kinetic inductance Lk(I) and surface impedance Z.(I) in

thin wire, slab, and strip geometries are calculated.

The finite difference-time domain (FD-TD) technique is applied to the solution of

Maxwell's equations. A computer program, which can be used to simulate and study

numerous electromagnetic phenomena, is developed and implemented on a 386-class per-

sonal computer. The FD-TD technique is a useful tool for students in electromagnetics.

The technique is flexible and can be applied to many basic EM scattering and radiation

problems. Because field solutions are found as a function of time, visualization of the

propagation of the EM fields is possible. The FD-TD technique is implemented for a
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two-dimensional rectangular grid in conjunction with a second-order absorbing boundary

condition. Both E- and H-field polarizations are analyzed. Finite objects consisting of

dielectric, magnetic and conducting materials, and perfectly conducting infinite ground

planes are modeled. Plane wave and line current sources are implemented. In addition

to the capability of animating the propagation of the EM fields, radiation and scattering

patterns can be generated.

A methodology developed to handle dispersive materials in the time domain is

extended to model the dispersive characteristics of the impedance boundary condition

used for a thin layer coating over perfect conductors. The impedance boundary condition

is first approximated as a rational function of frequency. This rational function is then

transformed to a time domain equation, resulting in a partial differential equation in

space and time. Discretization of the time domain model to efficiently handle the thin

layer coating is presented in the context of the finite-difference time-domain (FD-TD)

technique. The methodology is verified by solving a one-dimensional problem using the

FD-TD technique and comparing with the analytical results.

To understand the physical meaning of rational reflection coefficients in inverse-

scattering theory for optical waveguide design, we studied the relationship between the

poles of the transverse reflection coefficient and the modes in inhomogeneous dielectrics.

By using a stratified-medium formulation we showed that these poles of the spectral re-

flection coefficient satisfy the same equation as the guidance condition in inhomogeneous

waveguides. Therefore, in terms of wave numbers, the poles are the same as the discrete

modes in the waveguide. The radiation modes have continuous real values of transverse

wave numbers and are represented by the branch cut on the complex plane. Based on

these results, applications of the Gel'fand-Levitan-Marchenko theory to optical waveguide

synthesis with the rational function representation of the transverse reflection coefficient

are discussed.
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The coupled-wave theory is generalized to analyze the diffraction of waves by chiral

gratings for arbitrary angles of incidence and polarizations. Numerical results for the

Stokes parameters of diffracted Floquet modes versus the thickness of chiral gratings with

various chiralities are calculated. Both horizontal and vertical incidences are considered for

illustration. The diffracted waves from chiral gratings are in general elliptically polarized;

and in some particular instances, it is possible for chiral gratings to convert a linearly

polarized incident field into two nearly circularly polarized Floquet modes propagating in

different directions.

A general spectral domain formulation to the problem of radiation of arbitrary

distribution of sources embedded in a horizontally stratified arbitrary magnetized linear

plasma is developed. The fields are obtained in terms of electric and magnetic type dyadic

Green's functions. The formulation is considerably simplified by using the kDB system

of coordinates in conjunction with the Fourier transform. The distributional singular

behavior of the various dyadic Green's functions in the source region is investigated and

taken into account by extracting the delta function singularities. Finally, the fields in any

arbitrary layer are obtained in terms of appropriately defined global upward and downward

reflection and transmission matrices.

We investigated a method for the calculation of the current distribution, resistance,

and inductance matrices for a system of coupled superconducting transmission lines having

finite rectangular cross section. These calculations allow accurate characterization of both

high-Tc and low-Tc superconducting strip transmission lines. For a single stripline geome-

try with finite ground planes, the current distribution, resistance, inductance, and kinetic

inductance are calculated as a function of the penetration depth for various film thickness.

These calculations are then used to determine the penetration depth for Nb, NbN, and

YBa 2 Cu 3O 7 _. superconducting thin films from the measured temperature dependence

of the resonant frequency of a stripline resonator. The calculations are also used to convert
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measured temperature dependence of the quality factor to the intrinsic surface resistance

as a function of temperature for a Nb stripline resonator.

The electromagnetic radiation from a VLSI chip package and heatsink structure

is analysed by means of the finite-difference time-domain (FD-TD) method. The FD-

TD algorithm implemented incorporates a multi-zone gridding scheme to accommodate

fine grid cells in the vicinity of the heatsink and package cavity and sparse gridding in

the remainder of the computational domain. The issues pertaining to the effects of the

heatsink in influencing the overall radiating capacity of the configuration are addressed.

Analyses are facilitated by using simplified heatsink models and by using dipole elements as

sources of electromagnetic energy to model the VLSI chip. The potential for enhancement

of spurious emissions by the heatsink structure is examined. For heatsinks of typical

dimensions, resonance is possible within the low gigahertz frequency range.

Because the effects of diffraction during proximity-print x-ray lithography are of

critical importance, a number of previous researchers have attempted to calculate the

diffraction patterns and minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is applicable-as calculated, for

example, by the Rayleigh-Sommerfeld formulation-and that Kirchhoff boundary conditions

can be applied. Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant in the open regions between absorbers, and a different constant in

regions just under the absorbers (i.e., that there are no fringing fields). An x-ray absorber

is, however, best described as a lossy dielectric that is tens or hundreds of wavelengths

tail, and hence Kirchhoff boundary conditions are unsuitable. We have instead used two

numerical techniques to calculate accurate diffracted fields from gold absorbers for two

cases: a 30 nm-wide line at A = 4.5 nm, and a 100 nm-wide line at A = 1.3 nm. We

show that the use of Kirchhoff boundary conditions introduces unphysically high spatial

frequencies into the diffracted fields. The suppression of these frequencies-which occurs
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naturally without the need to introduce an extended source or broad spectrum-improves

exposure latitude for mask features near 0.1 urm and below.

In order to understand the physical meaning of rational reflection coefficieits in

one-dimensional inverse scattering theory for optical waveguide design, we have studied

the relation between the poles of the transverse reflection coefficient and the modes in

inhomogeneous dielectrics. By using a stratified medium model it is shown that these

poles of the reflection coefficient have a one-to-one correspondence to the discrete modes,

which are the guided and leaky modes. The radiation modes have continuous real values of

transverse wave numbers and are not represented by the poles of the reflection coefficient.

Based on these results, applications of the Gel'fand-Levitan-Marchenko theory to optical

waveguide synthesis with the rational function representation of the transverse reflection

coefficient are investigated.

In compact modules of high performance computers, signal transmission lines be-

tween integrated circuit chips are embedded in multilayered dielectric medium. These

signal lines are usually placed in different layers and run perpendicular to each other. The

interaction between the orthogonal crossing lines and the signal line affects its propagation

characteristics and may cause considerable signal distortion.

The interaction of a pair of crossing lines in isotropic medium has been studied using

a time-domain approach, where coupling is described qualitatively. This method becomes

computationally expensive when the number of crossing lines increases. With many identi-

cal crossing strips uniformly distributed above the signal line, the transmission properties

are characterized by stopbands due to the periodicity of the structure. Periodic struc-

ture have been investigated using frequency-domain methods. Periodically nonuniform

microstrip lines in an enclosure are analyzed on the basis of a numerical field calculation.

A technique based on the network-analytical formulism of electromagnetic fields has been

used to analyze striplines and finlines with periodic stubs. The propagation characteristics
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of waves along a periodic array of parallel signal lines in a multilayered isotropic struc-

ture in the presence of a periodically perforated ground plane and that in a mesh-plane

environment have been studied. More recently, the effect of the geometrical properties on

the propagation characteristics of strip lines with periodic crossing strips embedded in a

shielded one-layer isotropic medium have been investigated. Both open and closed mul-

tilayered uniaxially anisotropic structures are considered. A full-wave analysis is used to

study the propagation characteristics of a microstrip line in the presence of crossing strips.

The signal line and the crossing strips are assumed to be located in two arbitrary layers of

a stratified uniaxially anisotropic medium. An integral equation formulation using dyadic

Green's functions in the periodically loaded structure is derived. Galerkin's method is

then used to obtain the eigenvalue equation for the propagation constant. The effects of

anisotropy on the stopband properties are investigated. Numerical results for open and

shielded three-layer uniaxially anisotropic media are presented.

For microwave integrated circuit applications, the characteristics of interconnects

have been investigated for the propagation modes, time response, crosstalk, coupling,

delay, etc. In these analyses, it is assumed that quasi-TEM modes are guided along the

multiconductor transmission lines. The analysis were performed for arbitrary number of

transmission lines where the load and the source conditions were presented in terms of the

"modal reflection and transmission coefficient matrices.

To perform the quasi-TEM analysis, the capacitance matrix for the multiconductor

transmission line has to be obtained first. Both the spectral and the spatial domain

methods have been proposed to calculate the capacitance matrix. In the spectral domain

methods, two side walls are used to enclose the whole transmission line structure, and the

thickness of the strip lines has not been considered. In using the spatial domain method,

the structure has to be truncated to a finite extent to make the numerical implementation

feasible. The infinite extent of the structure was also incorporated, but only a two-layer
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medium was considered.

In practical microwave integrated circuits, the dielectric loss due to the substrate

and the conductor loss due to the metallic strips are also studied in the analysis of circuit

performances.

Based on the scalar Gre-n's function, a set of coupled integral equations is obtained

for the charge distribution on the strip surfaces. Pulse basis functions and a point-matching

scheme is used to solve numerically the set of integral equations for the charge distribution,

and hence the capacitance matrix. The duality between the electrostatic formulation and

the magnetostatic one is applied to calculate the inductance matrix. The conductance

matrix is obtained by using the duality between the electrostatic problem and the current

field problem. A perturbation method is used to calculate the resistance matrix.

Finally, a transmission line analysis is derived to obtain the transfer matrix for multi-

conductor uniform lines, which significantly reduces the effort in treating the load and the

source conditions. Transient responses are obtained by using the Fourier transform. The

results for two coupled lines are obtained.

With the ever increasing speed and density of modern integrated circuits, the need

for electromagnetic wave analysis of phenomena such as the propagation of transient sig-

nals, especially the distortion of signal pulses, becomes crucial. One of the most important

causes of pulse distortion is the frequency dependence of conductor loss, which is caused

by the "skin effect", and which can be incorporated into the circuit models for transmis-

sion lines as frequency-dependent resistance and inductance per unit length. Efficient and

accurate algorithms for calculating these parameters are increasingly important.

We have developed a hybrid cross-section finite element/coupled integral equation

method. The technique is a combination of a cross-section finite element method, which is

best for high frequencies. An interpolation between the results of these two methods gives
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very good results over the entire frequency range, even when few basis functions are used.

In the cross-section method, we divide each conductor into triangular patches and

choose one of the patches from the return conductor to be our reference. We then calculate

the resistance and inductance matrices for the patches. Using two conditions on the system,

that the total current in each wire is the sum of the currents in the patches, and that the

voltage on each patch in a wire must be the same (no transverse currents), we can reduce

the matrices for the patches to the matrices for the wires. In the Weeks method, the

patches are rectangles, and the quadruple integral is done quite easily in closed form.

However, it is also possible to evaluate the quadruple integral in closed form for triangular

patches, although the mathematics leading to this result is quite involved, and the final

form of the answer is complicated. We therefore use triangular patches as the most flexible

means of modelling conductors with arbitrary cross-sections; polygons are covered exactly,

and we are able to model quite closely other shapes, such as circles.

As frequency increases, the need to keep the uniform current approximation valid in

the patches requires either the addition of many more patches as the skin depth decreases,

or a redistribution of the existing patches to the surface, where the current is. However,

changing the distribution of patches makes it necessary to recalculate the resistance and

inductance matrices of the patches, thus increasing the computation time. Since we use a

surface integral equation method for high frequencies, we do not change the distribution

of the triangular patches for the cross-section method as we increase the frequency.

For high frequencies, we use a coupled surface integral equation technique. Under

the quasi-TEM assumption, the frequency-dependent resistance and inductance result from

the power dissipation and magnetic stored energy, which can be calculated by solving a

magnetoquasistatic problem, with the vector potential satisfying Laplace's equation in the

region outside all the conductors. The resistance and inductance are usually given by

integrals of these field quantities over the cross-sections of the wires, but by using some
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vector identities it is possible to convert these expressions to integrals only over the surfaces

of the wires. These expressions contain only the current at the surface of each conductor,

the derivative of that current normal to the surface, and constants of the vector potential.

A coupled integral equation is then derived to relate these quantities through Laplace's

equation and its Green's function outside the conductors and the diffusion equation and its

Green's function inside the conductors. The method of moments with pulse basis functions

is used to solve the integral equations. This method differs from previous work in that the

calculation of resistance and inductance is based on power dissipation and stored magnetic

energy, rather than on impedance ratios. It wiU therefore be more easily extended to

structures where non-TEM propagation can occur.

For the intermediate frequency range, where the conductors are on the order of the

skin depth, were found it very efficient to interpolate between the results of the cross-

section and surface methods. The interpolation function was based on the average size of

the conductors, measured in skin depths, and was of the form 1/(1 + 0.16a 2 /8 4 ), where it

a is the average cross-section of the conductors, and 6 is the skin depth.
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Coupled Noise Analysis for Adjacent Vias in
Multilayered Digital Circuits

Q. Gu, M.A. Tasoudji, S.Y. Poh, R.T. Shin, J.A. Kong
Research Laboratory of Electronics

Massachusetts Institute of Technology
Cambridge, MA 02139

In high-speed digital circuits, high frequency phenomena affects the characteristics of the
interconnections. Physical discontinuities or nonuniformities in the connections may cause
severe reflections when they can no longer be considered as conducting wires, but behave
as transmission lines and/or waveguides. In multilayered digital circuits, vias constitute
one of the most commonly-use4 class of interconnects.

Vias are not good carriers of high-speed signals. They cause signal distortion and re-
flections as well as severe degradation in the high frequency components. The analysis and
modeling of a single via and some quasi-static or quasi-TEM analyses of single via config-
urations have been carried out previously. To date, the analysis of coupled noise between
adjacent vias has received very little attention. The major reasons include the complexity
of multi-via structures and the difficulty of modeling and analyzing them accurately over
a broad frequency range.

* iThe electromagnetic coupling between two adjacent vias in a multilayered integrated
circuit is analyzed by means of equivalent magnetic fril array models incorporated with
the even- and odd-mode approach. Closed-form expressions for the coupled noise on the
passive via are derived. The coupling responses in the frequency domain and crosstalk
waveforms in the time domain for some multilayered via structures are calculated basedon these formulas. A 4-1ayer experimental model is constructed and measurements are

taken for the transmission, reflection, and coupling responses. The measurements show
good agreement with the calculated results over a frequency range of up to 18 GHz.
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Electromagnetic Radiation from Modules-on-Backplane
Configurations in Computer Systems

K. Li, M. A. Tasoudji, S. Y. Pob, R. T. Shin, and J. A. Kong
Research Laboratory of Electronic.s

Mastachusetts Institute of Technology
Cambridge, MA 02139

.*i High frequency digital signals associated with computers and communications equip-
ment have the potential for electromagnetic interference (EMI). The need for compliance
with the radiated emissions limits established by FCC and other regulatory agencies for
such equipment have led to increased interest in understanding and minimizing EM radia-
tion. As clock speeds increase beyond 100 M~z and edge-rates fail into the sub-nanosecond

* range, the EMC engineer is faced with FCC tests for frequencies beyond I GHz and the
prospect of increased energy for frequencies in the hundreds of megahertz range.

The modules-on-backplane configuration is a common assembly scheme for computers.
* . Embedded in these modules and backplane are reference planes which could be as large as

tens of centimeters. The reference planes configuration is of interest because the resonant
frequencies begin in the low hundreds of megahertz, given typical dimensions. The voltage
levels on such reference planes are subject to noise fluctuations (reference noise) originating

.<. from disturbances such as inductive discontinuities at connector pins. The increase in
power requirements and in the number of simultaneous switching circuits is likely to result
in stronger noise sources. A simplified model is used to analyze the modules-on-backplane
configuration. Conducting planes model the modules and the backplane. A generator,
which is positioned at the module and backplane interface, models the inductive voltage,
as a noise source, developed across the module-backplane connector.

The finite-difference time-domain (FD-TD) technique, which is based on the discretiza-
. tion of the Maxwell's equations, is employed in this analysis. Nodal electric and magnetic

fields are computed on a rectangular grid within a computational domain subject to appro-
priate boundary and initial conditions. An absorbing boundary condition is enforced on
the outer boundary of the computational domain and approximately simulates unbounded

X space. In the implementation of the FD-TD technique, the areas of concern addressed in-
cl, dude the modeling of the excitation as a coaxial line probe and the use of Prony's method4, to obtain late time responses of the fields for highly resonant configurations. Radiation
impedances are obtained from the voltages and currents on the probe and radiation pat-
"terns are calculated using Huygens' principle.

Experimental verification is made on physical structures compatible with simulation
models. The focus is on correlating computed resonant frequencies and radiation imped-
ances with those deduced from S-parameter measurements taken on a network analyzer.
Radiation impedances as functions of frequency are presented for various configurations.
Such variations include changing the number of modules and the dimensions and spacngsof modules and backplane and the addition of conducting panels to model the shielding or
enclosure environment.

This study provides basic information pertaining to the acceptability of noise levels in
Sthe interconlnect environment for EMI-related consideratioxns. Through the examination of

a variety of configurations it will also affect system-level packaging and assembly decisions.
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Analyses of Single and coupled Dielectric Rib Waveguides
and Discontinuities using the Finite-Difference Time-Domain Method

Alex Mou, Y. Eric Yang, Jin A. Kong
Department of Electrical Engineering and Computer Science

and Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139

Millimeter and submillimeter transmission structures are dominated by dielectric waveg-
uides. At these frequency bands, conventional microstrip transmission structures such as
microstrip line, coplanar line, slot line and finline all suffer from severe ohmic and radia-
tion losses. Analytical techniques for studying dielectric waveguide structures include the
full-wave integral equation formulations (both spectral and spatial domain) and the finite-
difference time-domain (FDTD) method. Compared to the integral equation methods, the
FDTD method is more straightforward to formulate and provides an alternative path to
analyze both time and frequency domain response in the presence of complex structures
such as discontinuities.

In this paper, electromagnetic pulse propagation in single and coupled dielectric rib
waveguide embedded in a three-layer stratified dielectric medium is simulated and analyzed
using the FDTD technique. Time domain transient response of a modulated gaussian
pulse is observed in the simulation. We first examine pulse dispersion, attenuation and
coupling characteristics for the transmission line structure. Results are found to be in good
agreement with those obtained from integral equation methods. We also extend the study
to an optical rib waveguide with a bend discontinuity. The FDTD simulation is used to
predict the electromagnetic leakage attributed to the discontinuity.

One of the problems facing the FDTD technique for the dielectric waveguide problem is
the proper absorbing boundary condition. Existing boundary conditions such as the Mur,
Enquist-Majda condition work best when wave incident angle is normal to the boundary,
which is generally not the case for dielectric waveguides. A comparison between different
conditions will also be presented
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Electromagnetic Fields in Metallic Enclosures
Lined with Resistive Material

M. A. Tassoudji, K. Li, R. T. Shin, J. A. Kong
Research Laboratory of Electronics

Massachusetts Institute of Technology
Cambridge, MA 02139

M. J. Tsuk
Technology Development and Architecture

Digital Equipment Corporation
Maynard, MA 01754

The use of equipment enclosures to shield against emissions and external energy is a
common practice. Efforts range from metal impregnated plastics to thick steel panels
incorporating waveguide design in air vents. The choice of complexity depends on system
performance and application. The question has often been raised as to whether high
field intensities within such enclosures will affect equipment performance. Clearly this is
increasingly pertinent in cases of heavy shielding where resonator-like structures with high
quality factors (Q) result. Moreover, in these cases, any energy leakage may be highly
frequency selective with substantial associated field strength.

The primary motivation for studying such structures is that computers are now operat-
ing at faster speeds and consuming more power resulting in significantly increased levels of
power at higher frequencies. Also typical metallic enclosure configurations have dimeusions
which are electrically resonant at frequencies in the hundreds of megahertz range.

This paper focuses on the use of resistive material within the enclosure walls for absorb-
ing some of the contained RF energy, thereby avoiding high Q enclosures and reducing the
likelihood of significant field buildup within the enclosure. The energy leakage from perfo-
rations on the walls is also being considered. The radiation properties of these structures
are observed by varying the number, size and position of the holes in the enclosure.

The finite-difference time-domain (FD-TD) technique is used in analyzing this problem
and the metrics are total radiated power and field patterns within the enclosure. The
excitation sources are line current source for the two-dimensional models and dipoles for
the three-dimensional cases. A Gaussian amplitude is assumed in order to obtain multi-
frequency characteristics and to exhibit the resonance properties of the model. In addition
to the radiated power through the apertures, the power absorbed in the resistive material
is also calculated.
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Abstract

In this paper a new method based on the wave transmission matrix is presented

to deal with nonuniform multiconductor line system. This method has not only the

ability of handling nonuniformity, but also the advantage of handling nonlinearity effi-

ciently. The wave transmission matrix is employed to characterize the multiconductor

transmission lines and the telegrapher equations, therefore, can easily be turned into

algebraic equations. The nonuniform transmission line is treated as many small seg-

ments of uniform transmission lines connected in cascade. The formulation for this

method is described in detail. Calculation approaches are discussed. Numerical results

are presented and comparison of them with previous work confirms the validity of the

method.



I. Introduction

In very large scale integrated digital circuits and systems, multiconductor transmis-

sion lines are commonly used as signal interconnections between chips, chip carriers,

circuit boards, or subsystems. As the operating speed of the circuits and the sys-

tems increases, the behavior of the multiconductor transmission lines employed as high

speed signal carriers will have significant impact on the performance of the circuits or

the systems. A multiconductor transmission line usually consists of cylindrical and/or

strip conductors embedded in an inhomogeneous medium and one or several of the

conductors serving as the ground. Inhomogeneous transmission lines can not support

pure TEM waves but quasi-TEM waves at low frequencies. Even if the medium is

homogeneous, at higher frequencies due to the conducting loss and higher order mode

propagation, the lines are not TEM in nature. Since a rigorous analysis of a multicon-

ductor transmission line is very involved, the analyses in most of previous works and

in the following sections are based on the quasi-TEM approximation. In fact, we have

seen that this is a very good approximation when the transverse dimensions of the line

are small as compared with the operating wavelength (1-11]. In addition to simplifying

the analysis of the multiconductor lines, the quasi-TEM approximation is also desired

for handling the line terminations which are usually described by circuit quantities

(voltages and currents) rather than by the more general field quantities (12]. As the

frequency of operation gets higher, the modes start to deviate from the quasi-TEM

modes and one must analyze the problem with rigorous full-wave approach [13-151.

The general approach on the analysis of the multiconductor line is as follows: uti-

lizing the electromagnetic field theory to characterize the multiconductor line by de-

veloping transmission line parameter matrices, such as the capacitance, inductance,

resistance and conductance matrices per unit length of the line, and to establish a

mathematical model, i.e., a set of equations governing the behavior of the line system;
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and then using preferable method, for example the modal analysis, to solve the equa-

tions analytically and/or numerically and to obtain the system responses in the time

and frequency domains through corresponding boundary conditions. Here, we shall

emphasize the method of analyzing the responses of the multiconductor transmission

line in the frequency domain and assume that the parameter matrices of the line are

available (refer to [16-21].

When the dominant mode in the multiconductor transmission lines is quasi-TEM,

the mathematical model which fully describes the line systems in the time domain or in

the frequency domain is the well known telegrapher equations (or refer to as transmis-

sion line equations). For uniform multiconductor transmission lines, the corresponding

telegrapher equations are most commonly solved by using the so-called modal analysis

in the time domain [1-7] or in the frequency domain [7-11]. However, for a lossy or

frequency-dependent line, usually the modal analysis in the frequency domain will be

used because in this case N different quasi-TEM modes propagating on a transmission

line with N signal conductors and one ground conductor can be defined in the fre-

quency domain only. In the modal analyses, the kernel of the approach is to decouple

the telegrapher equations by utilizing the method of characteristics, and then based on

given boundary conditions the problem can be solved in a variety of ways, for example,

by solving directly [3,6-7], or by network analysis methods [10]. Other approaches for

the analysis of the multiconductor transmission line are the equivalent circuit model

techniques [22-23], and matrix parameter methods (Green's function methods) [24-

29]. The modal analyses can not directly deal with nonuniform multiconductor line

problems, but incorporating with other techniques, such as the perturbation method,

iteration method, or the numerical method, it is still possible to use the modal analysis

in the time domain for some nonuniform systems [3,5,30]. However, the more efficient
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methods for handling the nonuniform transmission lines are the network matrix pa-

rameter methods [24-29] in the frequency domain and the spectral method [31] in the

time domain.

We shall present a new method based on the wave transmission matrix to deal with

the nonuniform multiconductor line system in this paper. This method has not only the

ability of handling nonuniformity, but also the advantage of handling nonlinearity in the

terminations efficiently. The wave transmission matrix is employed to characterize the

multiconductor transmission lines and the telegrapher equations, therefore, can easily

be turned into algebraic equations. The nonuniform transmission line is treated as

many small segments of uniform transmission lines connected in cascade. The boundary

conditions are formulated with linear loads in spectral domain and with nonlinear loads

in time domain.

The details of this method will be described in Sections II. The treatment of the

boundary conditions including nonlinear terminations will be discussed in Section III.

Calculation approach and numerical results will be presented in Sections IV and V.

II. Analysis and Formulation

The general system configuration under consideration is shown in figure 1. The sys-

tem consists of multiconductor interconnection lines teiminated with linear/nonlinear

loads. In this section, we use the wave transmission matrix to characterize the multicon-

ductor transmission lines. The boundary condition or termination will be considered

in next section.

For lossy multiconductor transmission lines, the telegrapher equations in the fre-

quency domain can be expressed as
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where V and I are the N dimensional voltage and current vectors on the N transmission

lines, and Z and Y denote the N x N impedance and admittance matrices per unit

length, respectively. The matrices Z and Y are symmetric. For uniform multiconductor

lines, they are related to N x N resistance (R), inductance (L), conductance (G), and

capacitance (C) real matrices per unit length as follows:

Z = R+jwL (2)

Y = G +jwC (3)

Now, we define a forward-going and a backward-going voltage wave vectors, V+

and V-, as

V± = V ± Z0 1 (4)

or the voltage V and the current I as

V= 1(V+ + V-) (5)
2

I - V-) (6)

where Z0 is defined in any of the following equivalent forms:

Z- = (Zy)1/ 2y-1 = (ZY)-'/ 2Z (7)

Substituting (5) and (6) into (1) and after some mathematical manipulation, we

obtain the wave transmission equations

V+ [ i] [ -(ZZO I + ZoY) (ZZO I - ZOY) 1 V+i (8)
z L-(ZZo I- ZOY) (ZZ' + ZoY)]

It is easy to prove that the diagonal elements of the 2 x 2 partitioned matrix on the

right-hand side of (8) are -(ZY) 1/ 2 and (ZY) 1/ 2 , and the off diagonal elementary

matrices equal zero. Equation (8) can be rewritten as

[V-] = [-(ZY)1/2 (zy)V/2] [Wi] (9)
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where 0 denotes a matrix with all the elements being 0.

From (9), we can see that the forward-going wave vector V+ and the backward-

going wave vector V- are decoupled from each other. This is only true for uniform

multiconductor transmission lines. There exists coupling between these two wave vec-

tors for nonuniform transmission lines, because the travelling wave in either direction is

continuously reflected by the nonuniformity of the lines along the propagation direction.

The equations in (9) are first order derivative matrix equations, it is obvious that

their solutions have the forms:

V+(z) = V+ezp(-Kz) (10)

V-(z) = Voexp(Kz) (11)

where V0• are constant vectors to be determined by boundary conditions of the lines,

and K is the propagation constant matrix of the line,

K = V/Z-Y (12)

As we know that the voltage wave vectors at any two positions, zl and z2, on the

transmission line are related through a wave transmission matrix, the vectors at z,

Vl(z), therefore, can be obtained from the wave vectors at z = 0, V+(0), in terms of

the following expression

V+(z) 1= rAj(z) A 12 (z)] V+(0) 1 (13)
V-(Z)] 1A21 (z) A22 (z) [V-(0)]

where [A ij] is the wave transmission matrix of the transmission line segment between

z and 0. The elementary matrices A,3 (i,j = 1,2) in the wave transmission matrix can

be easily obtained by utilizing (10) and (11), and they are, respectively:

A 11 (z) = exp(-Kz) = 1 - + KY (K)24.z

-(]K )3 z .+ ---+ ( -1)k:C K)I: z - . - 1
3! (14a)

A 12(z) - A 21(Z) = 0 (14b)

and
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A2 2 (Z) = exp(Kz) = 1 + K Z+ K)z ~2!

z3 k
+ (K) 3 -., +.. + (K)-+.. (14c)

where 1 is the unit matrix. The features of the wave transmission matrix are very

similar to the chain parameter matrix, those identities given in [24] are also suitable

for the wave transmission matrix.

For a nonuniform multiconductor transmission line, we can approximate it as many

small uniform line segments with different characteristic impedance matrix Zok (k =

1,2,...,m) connected in cascade. The wave transmission matrix [Aij] for the whole

multiconductor line can be expressed in product of sub-wave-transmission-matrices

[Ak,iij characterizing each small line segment, and impedance transition submatrices

[Tk,ij],

[All A 1 2 ] -Am,ii Am:12 1 Tk,11 Tk,12 ][Ak,11 Ak:121\iA2 1 A2 2 ]2 -[Am,21 Am,22 _ Tk,21 Tk,22 Ak,21 Ak,2 2 ]) (15)k=rn-lIII

where Ak,ij (i, j 1, 2) have the same forms as (14), and they are:

Ak,ll = ezp(-KkAtk) = ( ( (16a)
1,=0

Ak, 12 = Ak,21 = 0 (16b)

and

Ak,22 = ezp(K&Atj)= E• p(KjA4At)P (16c)

where At4: is the length of the kth uniform segment at z = zk, and Kk is the propagation

constant matrix of the kth segment and it can be expressed by the per unit length

impedance and admittance matrices of the kth segment, Zk and Yk, as

K k --= V/Z-A . (17)
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In (15), the elementary matrices Tk,ij in the impedance transition submatrices have

the following forms:

Tk,22 = j(Zo,k + Z 0 1,+I)Z, (18)

and

Tk,12 = Tk,21 = j(ZOj: - ZO,k+I)Z0 - (19)

where Zok (k = 1, 2,... ,m) is the characteristic impedance matrix of the kth uniform

segment.

Comparing (15) with (13), we can see that in the nonuniform case the off diagonal

elementary matrices A 1 2 and A 2 1 are not zero matrices. This means that there exists

coupling between the forward-going and backward-going voltage waves, V+ and V-

due to reflection caused by the nonuniformities along the line. The coupling between

forward- and backward-going waves will be weak if the nonuniformities are small.

In reality, uniform or nonuniform multiconductor transmission lines are usually

terminated with linear and/or nonlinear loads. The solution for the multiconductor

transmission line systems must be related to boundary conditions of the systems. The

approaches for treating different boundary conditions will be described in the next

section.

HI. Boundary Conditions

In the previous section the multiconductor transmission lines were characterized

by the wave transmission matrix A. In order to analyze the total response of the

system, the terminations or boundary conditions need to be considered. In this section

we formulate the boundary conditions with linear loads in spectral domain and with

nonlinear loads in time domain.
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We assume Thevenin equivalent voltage sources and impedances for the linear ter-

minations of the multiconductor transmission line system of length t as shown in Figure

1. Thus the boundary conditions are:

V(O) = Es - ZSI(0) (20)

and

V(M) = EL + ZLI(t) (21)

where ES and EL denote excitation voltage vectors at z = 0 and z = 1, respectively, and

ZS and ZL are N x N diagonal source and load impedance matrices at the corresponding

ends.

For linear terminations, we can determine the boundary values of the forward- and

backward-going voltage wave vectors from (20) and (21) using (5), (6) and (13). The

final expressions of the boundary values V+(O) and V-(t) are:

V+(o)= 11 - rsA-lA21 - rsA;1(1 + rLA12A•-)- rLZOmZ-1A2-]-1

[TSES - rsA•-(1 + rLA12Af-l)-TLEL)] (22)

and

V-(t) =[1+ rLA•-A1 2 - rLZomZolA- 1 (1 - rsA-1A21 -) sar2]--

[TLEL - rLZomZo.1 A2-'(1 - rsA1A21)-'TsEs)] (23)

where rS,L and TS,L are

r$, = (1 + ZSLZ 1 0om)-'(1 - ZSLZoI) (24)

and

TSL = 2(1 + ZSLZ- 1om 1-1 (25)

where Z 01 and ZOn are the characteristic impedance matrices of the first and the last

line segments. When deriving (22) and (23), the following identity has been used.

AIIA22 - A12A=2A2lA22 = ZOmZ01 (26)
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The voltage wave vectors at any point z on the line can be obtained from (13) and

the boundary values (22) and (23), and they are:

LV(Z)J Al=- A 1 2ýzj 1 - 2 ~A 1  , A22 ) [V+(e) (27)

where matrix [Aij(z)] is

All(z) A12(z) [AmIi Am.1 12 1
A21(z) A22(z) A], Ami,22

1 ([Tk,ll Tk,12 Ak,11  Ak

r - T k,21 T k,22 -A-A k 2 2])

(28)

The results derived here are in frequency domain and should be performed for each

frequency separately. The time response of the voltages can be obtained using Fourier

transform.

For nonlinear terminations of the multiconductor transmission lines, the analysis of

boundary conditions utilizes the incident wave, Vic, and reflected wave, Vref, which

are related by the scattering wave matrix S.

vref = SVinc (29)

or in terms of elementary scattering matrices as,

Vref 10 - i [ S12 Vilc(0)1 (30)
[vref(o) 1 [i.•c(o S 1  S 22 [S

where Vinc(O) and vnc(l) are the incident voltage wave vectors at z = 0 and z = 1,

and Vref (0) and Vref (1) are the reflected voltage wave vectors at z = 0 and z = 1.

The Sij are related to the elementary wave transmission matrices Ai3 as follows

S11 = -A-'A21

S 12 = A22

S2 1 = All - A 12A22A 2 1

S22 = A12A22
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The relation between the reflected and incident voltage vector in time domain can

be written as

Vref = h * vinc (31)

where h is the inverse Fourier transform of the scattering matrix S and asterisk denotes

convolution with respect to time.

Consider the N nonuniform transmission lines, where each line is termihated by a

voltage source and a load. Using the relationship of the incident and reflected wave

with the current and voltage, the following expressions can be obtained,

vinc = v' + e - z * i (32)

vref= v+ + .*i (33)

where v' is the voltage vector across the loads, e is the voltage source vector, i is the

current vector and each of its elements is a function of the corresponding element of v'.

The matrix z is the inverse Fourier transform of the diagonal impedance matrix char-

acterizing the terminal impedance lines. The first N diagonal elements of z correspond

to the impedances of the terminal lines connected to the first segments of the trans-

mission lines and the latter N elements correspond to the impedances of the terminal

lines connected to the last segments.

To solve the equations (31)-(33) numerically, we discretize the time variable and

convert the convolution integrals into summation. After some manipulation, we obtain

k-1 k

Vk = -ek + [1 - hol- h&-_mv'nc -[1 + hol E Zk-,n } (34)
m=0 m=O

In the above equation, the subscripts denote the discretized time step, for instant

v1k = vt(kAt), where At is the time step. Equation (34) is a set of nonlinear algebraic

equations, which can be solved by means of numerical techniques, such as the Newton

Raphson technique. The incident voltage used in equation (34) can be obtained from

k

k = vI: + - E(35)
m=1



The above formulation would also work for linear loads for which the current will be

the ratio of v' to the load impedance.

IV. Computational Consideration

The major part in the numerical implementation of this method consists of various

matrix operations and manipulations, including calculatior, of matrix functions such as

square-root and exponential functions.

In the calculation of wave transmission matrix, the square-root manipulation of

a matrix is involved as shown in (12). A formal approach to carry out the square-

root of a matrix is to transform the matrix into a diagonalized matrix, i.e., to use the

characteristics method. Define a matrix X to be the square-root of ZY, then we have

ZY = XX (36)

Assuming that the eigenvalue and eigenvector of ZY are fl? and Di, respectively, they

must have the following relationship

D-'ZYD = diagft (37)

where D is a matrix consisting of the eigenvectors Di, i.e., D = [D 1,D 2 ,...,DNJ.

Substituting (36) into (37), we obtain

diag[#/?] = D-1 ZYD = D-1 XDD-1 XD (38)

From above, v/2Y is obtained as

X = V = Ddiagpi]D- 1  (39)

In general, a matrix function can be defined and calculated by the following formula

f(W) = Ddiag(f(Al),f(A2),.. ., (,A )]D-1 (40)
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where f(-) denotes a function, such as square root and/or exponential function, and Ai

is the eigenvalue and D is the matrix consisting of eigenvectors of matrix W.

The elementary matrices Aii (i,j = 1,2) defined by (16a-c) can be calculated

directly by the series expansion. The matrix series are absolutely convergent and

their convergence rates depend upon the magnitude of eigenvalues of VZ-/yk, 0 k,i (i =

1, 2,..., N), and the length Alk of the line segments. The smaller the product LIfk,iIAlk,

the higher the convergence rate. Therefore, in order to obtain high convergence rate

we need to divide the uniform/nonuniform line into large number of short segments,

which is computationally expensive. The exponential matrix functions can also be

calculated using equation (40), as in the calculation of square-root function. However

the latter requires the calculation of the eigenvectors of the matrix, a procedure very

time consuming numerically.

An alternative approach to calculate the elementary matrices is to make use of the

following Sylvester's formula [32]. If a N x N matrix W has N distinct eigenvalues, a

function of matrix W can then be calculated by

N

f(W) = E f(,.)Z,. (41)
r=1

where A,. are eigenvalues of matrix W, and Zr are N x N matrices given by

Ni w-Ai1
Zr = HJ (42)

i= 
4

The matrices Zr satisfy the following relations:

N

1: zr = 1, and Zz, = 0 (r #s) (43)

The approach using equation (41) avoids the calculation of the eigenvector and,

since it uses exact formula as (40) instead of series expansion, it also avoids the problem

of convergence. Therefore it is numerically much more simpler and faster. Moreover, by

13



using (41) in the calculation of the elementary matrix Aij, the manipulation of square-

root and exponential of matrix VZiy can be combined and accomplished in one

procedure. For the cases of coupled microstrip lines, the eigenvalues which correspond

to coupled modes of the structures are always non-degenerate due to the coupling effect.

In our numerical implementation, both approaches have been used, if the eigenvalues

of the matrix product ZY are distinct. Same results are obtained, while the Sylvester's

formula significantly reduces the computation time.

To validate the present method and its numerical implementation, here we consider

a pair of symmetric nonuniformly coupled lines. For this case, the elementary matrices

in (16) and (17) are 2 x 2 and they can be calculated analytically. Assuming the pair of

nonuniform transmission lines have the following impedance matrix Z and admittance

matrix Y:

= R(z) ] +jW [L(z) L(z) (44a)

and

Y = G)G(z)] + ' C(Cz) C%(Z) (44b)

Then the square root of ZY can be obtained by the following expression

K- Z• "Y+ - If 7•++ It

where 7+ and 7- are the eigenvalues of K given by

7+ = -,/[R(z) + jw(L(z) + Lm(z))][G(z) + jw(C(z) + Cm(z))] (46a)

and

-y- = ,/[R(z) + jw(L(z) - Lm(z))][G(z) + jw(C(z) - Cm(z))1 (46b)

The exponential function in (16a,c) are given by the following expression

ep(- K~ [ I exp(-r+At) + zpC(-Y.-.At) ezp(C-+ At) - e•zp(-_YAt) (47)

2 1eP+ At) - At) exp(7+At) + exp(ý7-.At)]
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The characteristic impedance matrix Z0 will be

zo = Z--YY-l
[a+Wc, -. (+-- G+ •C,-Y -•,+-)]C(-

A1 (-, + +7v-) " "-'+ AC -+-) +7+ )

=IG+wcw ] ~W= +C-r(-Y+ - -- )- L 7+ -Y-) AC('+ +' -) - -- YCt+#w' -7--)J

(48)

where

AC = (G + jwC)2 + w2Cn.

For this example, we use the same parameters as that in Fig. 8 in [5]. The total

length of the line is 1cm. The elements of matrices Z and Y in (44) are:

L(z) = 5.73(1 - kL(z)) (nH/cm)

Lm(z) = kL(z)L(z) (nH/cm)

C(z) = 1.81(1 + kC(z)) (pF/cm)

Cm(z) = -kC(z)C(z) (pF/cm) (49)

kC(z) = 0.2 - 0.05[1 - cos(27rz)]

kL(z) = 0.2

R(z) = G(z) =0

A pulse source with amplitude 10 Volts, both rise time and fall time of 10 ps, and

duration 20 ps is imposed on one end of the lines and all the ends are terminated with

50 11 load. The time waveforms of the voltage at each end are given in Fig. 2. These

results compares very well with those of [5], especially for the near end and far end

coupling noises. The numerical calculations of the matrix are compared with analytical

results when possible and very good agreement is found, therefore verified the numerical

codes.
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V. Numerical Examples

In this section, several examples of nonuniform multiconductor microstrip lines with

linear or nonlinear terminations are considered. In the analysis of any transmission

line system, we need first to construct the impedance matrix Z and admittance matrix

Y, as defined in (2) and (3) by resistance (R), inductance (L), conductance (G),

and capacitanc. (C) matrices. Many methods have been developed to calculate the

impedance and admittance of microstrip lines. However, the formulation developed

in the previous sections does not depend on the ways those parameter matrices are

calculated. Moreover, by introducing different effects in the parameter matrices, the

same effects can be incorporated into the system signal responses. For example, if the

inductance and capacitance are calculated as frequency dependent, then the dispersion

can be included, if the skin effects are considered in the calculation of resistance and

conductance, the overall losses as a function of frequency can be determined. In the

following examples, we calculated the inductance and capacitance in a way similar to

that of [35]. The resistance and conductance are calculated by the strip cross section

and the metal conductivity. The elementary matrices Aij are computed by utilizing

(41) (Sylvester's formula) for the uniform/nonuniform regions.

As first example, the nonuniform coupled interconnection, given as example 5 in

[31], is analyzed. A ramp function incidence with a rise time 100 ps and an amplitude

1 volt is applied on the active line. At beginning, we employed a frequency bandwidth

from DO to 100 GHz, and obtained the time waveforms on the active and passive

lines as shown in Fig. 3(a) and 3(b), respectively. Comparing them with those results

presented in [311 and [33], we found that our waveforms are sharper than theirs. As we

use less frequency bandwidth, such as from DO to 15 Ghz, the resulting waveforms are

smoother as shown in Fig. 4(a) and 4(b), and they are very similar to those given in

[31] and [331. In the calculation, we use 80 small uniform segments with equal length to

approximate the nonuniform region of this coupled interconnection. The CPU time is 3
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minutes and 50 seconds on DEC Station 3100 for the 100 GHz case with 500 frequency

points.

As discussed in Section III, multiple line system with nonlinear terminations can

be analyzed efficiently in terms of scattering matrix and the corresponding impulse

responses in time domain. As the second example, we consider the case of two uniformly

coupled lines with nonlinear terminations. In order to check our results, we used the

same L,C, R and G parameter matrices and nonlinear load as that given in [25]. Fig.

5(a) gives the near-end and far-end voltage responses on the active line, and Fig. 5(b)

gives those on the parasitic line. Our results match very well with that of [25]. This

further confirms that our method is efficient and valid for solving multiconductor line

with nonlinear termination.

In the following example, we analyze a more complicated three nonuniform mi-

crostrip line structure with both linear and nonlinear terminations. The transmission

line system and the cross section of the microstrip are depicted in Fig. 6. The thickness

of the metal strip is assumed to be T = 5ji/m. The surface resistance of the metal strip

is R = 30mfl/square. In our calculation, the 1cm long nonuniform microstrip is di-

vided into 50 segments for computing the elementary matrices. The incidence voltage

is a step function with an amplitude of 1 volt. First, we calculated the linear load

case where all ends are terminated with 50 (1 resistors. Fig. 7(a) shows the near-ends

response voltages and Fig. 7(b) shows the far-end responses. These results compare

very well with that given in [341, even though the L,C, R and G matrices are calculated

differently and the strip thickness is not given in 134].
Next, we calculated the case where the active line far-end termination was replaced

by a nonlinear load , but the rest were kept the same. The nonlinear load is a diode

with nonlinear characteristics i = I,(eV/VT - 1), where Is = imA and VT = 25mV.

In Fig. 8(a) and 8(b), the voltage waveforms on the far and near end terminals of the

three lines are shown. Comparing Fig. 8 with Fig. 7, we can see that the nonlinear
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load not only varies the waveform at port 4 on the active line, but also changes the

waveforms at the other ports.

VI. Conclusions

A new method based on the wave transmission matrix to deal with nonuniform

multiconductor transmission lines has been developed. One of the advantages of this

method is the flexibility of handling a variety of nonuniform multiline structures, be-

cause in most cases it is possible to approximately deal with a nonuniform multiline

as small segments of uniform multiline connected in cascade, and the total wave trans-

mission matrix will be the multiplication of all the submatrices representing each small

uniform segment. The other virtue is that uniform or weak nonuniform multilines will

have diagonalized wave transmission matrices. This method is developed on the vari-

ables, forward going and backward going waves, instead of the voltage and current, it

is consistent with the method solving nonlinear problems in terms of scattering matrix

and the corresponding impulse responses [27,28]. They can be easily incorporated, and

then an approach to handle nonuniform multiconductor transmission line with nonlin-

ear termination problems can be achieved. This combination method is very efficient

to solve the nonuniform structure with nonlinear termination problems, even if the

nonuniform structure is a lossless or very low lossy system. The methods based on

the voltage and current variables will have hard time to deal with the very low lossy

multiline with nonlinear termination problems.

The examples given in the previous section firmly validate that this method is

efficient to deal with nonuniform multilines and is significant to corporate with the

method solving nonlinear termination problems. It is possible to extend the combina-

tion method for solving more general nonuniform and nonlinear problems.
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Figure 1. System configuration of multiconductor interconnection lines with lin-

ear/nonlinear loads.

Figure 2. Time waveforms of transmitted signal, near end noise and far end noise

on the coupled lines with parameters given by Equ. (49).

Figure 3. Time waveforms on two coupled nonuniform lines with frequency band-

width from DC to 100 GHz, (a) active line, (b) passive line.

Figure 4. Time waveforms on two coupled nonuniform lines with frequency band-

width from DC to 15 GHz, (a) active line, (b) passive line. -

Figure 5. Time waveforms on two coupled lines with nonlinear terminations, (a)

active line, (b) passive line.

Figure 6. Configuration of three nonuniform microstrip system with linear or non-

linear loads.

Figure 7. (a) Near-end and (b) far-end response voltages with linear loads for the

system of Figure 6.

Figure 8. (a) Near-end and (b) far-end response voltages with nonlinear loads for

the system of Figure 6.
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Abstract

A macroscopic model is proposed for nonlinear electromagnetic phenomena in supercon-

ductors. Nonlinear constitutive relations are derived by modifying the linear London's

equations. The superelectron number density as a function of applied macroscopic currvint

density, ns(J), is derived from a distribution of electron velocities at a certain temperature

T. At temperature T j OK, the function n.(J) has a smooth variation near the macro-

scopic critical current density Jc. Agreement has been found between this ns(J, T) m,,od'l

and the temperature dependence of ns in the two-fluid model. The nonlinear conduct Wvit ies

cs(J) and an(J) are obtained from the London's equation with the modified n,(.1) fun,-

tion. Nonlinear resistance R(I), kinetic inductance Lk(I) and surface impedance Z,(I) in

thin wire, slab, and strip geometries are calculated.



I. Introduction

Superconductors have great potential applications in many fields. For example, in mi-

crowave integrated circuits, high-Q resonators and microstrips can be made of supercon-

ductors with low losses. The discovery of high-Tc superconductors has also made a big

impact on modeling of superconductors. Problem of modeling nonlinear electromagnet ic

properties of a superconductor is of practical importance [1-9]. For example, in application

of superconductors to high-Q resonators, fields and currents are very large at resonance

and nonlinear effects are inevitable.

In this paper, we use the macroscopic (classical) theory to model nonlinear supercondilc-

tivity. The constitutive relations which relate electric field E and magnetic field B to

superconducting current density 7 s will be derived. The model is based on two Londoii

equations and the two-fluid model. New problem at hand is to incorporate the nonlinear

effects into the constitutive relations. Application of the nonlinear constitutive relationls

will provide new methods for studying nonlinear effects in superconductors.

There are different types of nonlinearity in superconductors. One type of nonlinearity is

displayed in polycrystalline superconductors where granular currents are involved [1.2].

The granular nonlinearity occurs when the current I is above I, (here rc is the threshold

current of the grain junctions). It is similar to a p-n junction's exponential I - V relation.

It is also found in type II superconductors that the vortex motion in the mixing state

(between the superconducting and the normal states) can cause a nonlinear V -I relation

when current density J is slightly greater than the critical current density Jc [3]. The

granular or vortex nonlinearity will not be discussed in this paper.

Another type of nonlinearity is intrinsic for all superconductors. This is due to the de-
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pendence of superelectron number density n. on the applied current density J. This

nonlinearity is more general. There have been few papers in literature directly addressing

this nonlinearity problem. In this paper we will focus on this intrinsic nonlinearity.

It is necessary to point out that this paper is based on macroscopic theory with certain

hypotheses. The authors do not intend to propose a rigorous microscopic theory to explain

the nonlinear superconductivity. The purpose of this paper is to provide engineers with a

material-independent macroscopic model for nonlinearities in superconductors. The midel

will be based on macroscopic parameters. The model is intended to achieve the following:

(1) explain the nonlinear voltage-current (V - I) relations and the dependence of induc-

tances on currents (L - I relations). This requires derivation of a complex conductivity

&3(J) model; (2) explain experimental results which show that the macroscopic V -I curve

has no abrupt transition when J exceeds Jc; (3) obtain a temperature dependence of ns(T)

which agrees with what is assumed in the two-fluid model; and (4) derive a general scheme

for solving nonlinear electromagnetic problems in superconductors.

II. Distribution of Electrons

First it is assumed macroscopically that when an electron has an energy E < Ec, it is

in superconducting state and paired with another electron; when E > Ec, it is in normal

state. This characteristic energy E, is a function of temperature T. For higher T, E, is

lower. At the critical temperature T = T,, Ec = 0. Such characteristic E, resembles the

gap parameter A in the BCS microscopic theory. It may correspond to the de-pairing

energy of a Cooper pair. But in this paper, this Ec is proposed as merely an assumption.

The origin of this Ec should be studied in microscopic theory. We will leave this problem

and use Ec as a starting assumption.
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We assume the temperature dependence of E, as

Ec(T) =3.52kBTc (l I .)I forO<T•T(

where kB is the Boltzmann constant, Tc is the critical temperature, and a is a free parani-

eter which may depend on the type of material (a > 0 is required).

In macroscopic theory, the energy for each electron consists of kinetic energy and potential

energy, E = Ek + Ep = Imv2 + Ep, where m is the mass of an electron and v is its velocity.

In quantum theory, v is the expectation value < ¢41ik >, where 'k is the wavefunetiion of

the electron and f) is the velocity operator. The electron energy E can be expressed as a

function of temperature T, applied current density J, magnetic field H, and field frequency

f, E = E(T, J, f, H). Ec is the origin for critical values of Tc, Jc, f, and He.

Consider a case where the electrons have one-dimensional velocities, for example. in a thin

(radius a < A the penetration depth) wire within which the current flows in only one

direction. The electrons in the sample have different velocities due to thermal niotion.

The average velocity of all electrons is nonzero along the current direction. The current

density J is a macroscopic quantity. At a certain point i', J is related to the average

velocity of the electrons in a small volume AV,

S= Z'-q' (2)
AV

where N is the number of electrons in AV and q is the charge of an electron. Note that

not every electron has the same velocity. The velocities vi of the electrons obey a certain

distribution. Here we assume that the number of electrons, WN, which have the veloriti•s

between v and 6v obeys a one-dimensional distribution. If we define

n(v) = ,N (3)
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then [10,111

n(v) = n(v, vA, no, m, kBT) (4)

where vA is the average velocity of the electrons, m is the mass of an electron, and no is the

total number density of electrons in AV. Figure I shows a possible n(v) function where n(v)

is assumed to be a continuous distribution of a Gaussian form. The specific mathematical

form of the distribution n(v) may be obtained from the microscopic quantum theory. If

the wavefunction of each electron Vi is taken into account for a distribution n(.i), where

vi =< OIlblki >, such formula can be derived from statistical physics. The numerical

results shown in this paper are obtained by using the distribution in Figure 1.

We can relate the two macroscopic quantities, J and vA by

f +00J 0 qn(v)vdv = qnovA (5)

at AV.

The T dependence of n(v) requires that at T = 0,

n(v) = no,(v), (6)

a delta function [12]. For higher T, the spread of the distribution is wider.

III. ns(J) and Critical Current Density Jc(T)

Since the electrons have different velocities, and therefore different energies at a certain

applied current density J, the electrons will not all exceed the E, at the same time. The

number density of superelectr%,..s, ns, does not disappear abruptly when J exceeds th"

macroscopic critical current density J,. Only when T = 0 and n(v) becomes no6(T'), ns(.J)

shows an abrupt drop to zero at a critical J,(T = 0): for J < Jc(0), ns = no; and for

5



J > J,(O), ns = 0. In experiments, since absolute T = OK is not achievable, a completely

sharp transition of ns is not observed.

The Jc(T) is related to the average velocity VA and characteristic energy Ec. First, we

define a characteristic velocity vc for a single electron corresponding to Ec. If the potential

energy is included in the case of maximum kinetic energy, C H

V2-Ec/m. Since J = noqvA, we define

_/7.-0 4 kB9Te T a/2

Jc(T) = qnovc = qnoV 1 ( - 7') (7)

as the critical current density. This J, is different from the Ginzburg-Landau's de-pairing

current density. Here Jc(T) is a quantity derived from the hypothetical characteristic

energy Ec via the classical kinetic energy expression. For T # 0, ns(J) is a smoothly

varying function and the sample is partially superconducting. The JJ(T) has a different

characteristics from J, at T = 0. This smooth varying feature of the I - V curve has been

widely observed in experiments [5.61.

Since vA = J/qno, the number density of superelectrons (here we count the single electron

density rather than the pair density) ns(J) can be derived from the velocity distribution.

The superelectrons are those whose energy are lower than Ec. In the one-dimensional case.

v (T)
lfe(T) n(v)dv (S)s(J) =-v.(T)

In general, this integral can only be evaluated numerically.

At T = Tc, vc = 0, hence n, = 0 for all J's. By using the electron velocity distribution in

Figure 1, ns(J) is plotted in Figure 2 for four different temperatures. Here J is normalized

by the Jc at T = 0. At T = 0, n, = no for J < J,(O). This is what has been predicted byi

the two-fluid model.
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The temperature dependence of ns assumed in the two-fluid model is that

n,(T) = no [1 -( T)4]

The ns(T) function is compared with our distribution model in Figure 3. For a fixed .1,

the ns(T) curve matches the two-fluid model for a = 3/2.

IV. Conductivities as(J) and On,(J)

To derive the constitutive relations of superconductors for electromagnetic fields, we will

use the London's equations. The London's equations are derived from the fundamental

Newtonian dynamics and the Meissner effect. They can also be derived from quantmiin

mechanics by introducing a canonical momentum [3,8]. If we do not consider the Lorcntz

force due to magnetic field, the linear London's equations are valid from the Drude model

and the Newton's second law.

at A

Vx~s= -- (10)

where E and B are the total electric and magnetic fields, respectively, J, is the cirrent

density due to superelectrons, and A = ms/q2ns. The subscript s denotes that the quantity

is of superelectrons. The nonlinearity will be included in A(J) = , 0 A2, and

.ns( T)yO (1

Once ns(J) is known, A(J) can be derived. Hence, the nonlinear constitutive relations are

obtained. Nonlinear effects come in A and ns.

Substituting eq. (8) of ns(J) in A, we derive the A(J) function, which is plotted in Figiure

4. The penetration depth goes to infinity when J > Jc(T). Conductivities ois(.J) zind
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an(J) are derived from the London equations for time-harmonic (e-i' t ) fields

iq~ns
:q s •(12)

and
q2nnr (13)

- m(1 - iW()

where
/v,'(T)

n,(J) = n(v)dv

and the number density of normal electrons nn(J) =- n 0-ns(J) from conservation of charge.

The above equations are the main results of this paper. The conductivities are plotted in

Figures 5a and 5b, where r is the transport time or the mean scattering time of normal

electrons. as(J) and an(J) reflect the current dependence of n, and nn, respectively. These

plots are for T = 88 K very close to the critical temperature T, = 90 K. The nonlinear

behavior is easy to see. Total conductivity is a complex number

&,(J) = an(J) + as(J) (14)

V. Geometry Effect in Nonlinear Relations

1. Thin wire

For a thin wire superconductor with radius a << A, the current density J can be assumed

independent of thb- radius p. The thin wire is an ideal case since a < A 's not practical.

Usually r ; 10-12 sec, and w < 109 Hz, hence wr < 1 which is the quasi-static case.

an .g q2 n"r Here we can not assume IasI »> jan since we are studying the transition
Tn

region where ns may become very small.
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Resistance per unit length of the wire can be written as

R = Ia 1 (1-5)
[Io.,,12 + 10.,12,a 2

The kinetic inductance Lk per unit length of the wire can be written as

Lk = [ Ia.i I + (16)

In this case, the internal and external inductances, Lin and Lez, which are related to the

energy stored in the magnetic field, are independent of I and therefore are linear. Figure

6 shows the calculated R - I and Lk - I curves from eqs. (15) and (16), where wT = 10-3,

I Jira 2 . The R - J curve appears very nonlinear because T = 88 K is very close to

Tc= 90 K. One interesting behavior in the Lk - J curve is that the maximum L, appears

near Jc. This can be explained from eq. (16). At J << Jc(T), ns > nnwr, hence Lk . 1/-Is

is small. At J > J,(T), nnwr > ns, hence, Lk -_ nf/(nn) 2 is also small. When nnfwr and

ns are comparable, a maximum of Lk may be achieved.

A special case is at DC when w = 0. From eq. (12), a.s --+ oo. f'rom the first Lolndohn

equation, =-A = 0. When J > Jr, n, -4 0, then it is possible forE # 0. If .,. has

a small time fluctuation, then j is not exactly zero and the above quasi-static discussion

can be applied.

2. Slab and thin film strip

The above discussion has not taken into account the geometry of the superconductor. For

superconductors with finite dimensions, e.g., a slab in Figure 7, the non-uniform distribu-

tion of current density Jy(x) will cause the nonlinearity to occur earlier in the R - I and

Lk - I curves. The internal and external inductances Lin and Le, will also be nonlinear

since Jy(x) is determined by I,

I1= if Jyds = f dz fdxJy(x) = J dz fdx&(x)E(x) (17)
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where E(x) is the electric field. For a uniform current density, Jy() = JA, JA = I/AZ(

where d is the thickness of the slab. For non-uniform Jy(x), Jy is bigger than JA at the

edge of the slab and ns(J) is smaller at the edge. Therefore, for the same magnitude of I,

inhomogeneous J,(x) will exceed Jc at some x's even when JA is less than J.

If a three-dimensional velocity distribution is considered for a current flow in the y direc-

tion, Jy ----= qnovA and

lim n(17) = nob(Vu)b(vu - VA)b(VZ) (IS)T---0

ns(Jy) = V dvy 27 dvf, J v.-V n(F)dv, (19)
-Vvc vii v

with vA = Jy/qnO.

Under the quasi-static condition wr << 1, if a current I is applied along y direction in

the slab, a magnetic field Hz(x) will result from the applied current Jy(x). Note that in

the finite-width slab of a linear superconductor, even at w = 0, current Jy(x) has a non-

uniform distribution, due to the penetration depth A. From the second London equatiOn

(10) and V × =, V x H t, under the London gauge, V- A = 0 and

A = -AJs, (20)

V 2[JsA 2(J)J = Js + J. = J (21)

where A is the vector potential. In general, this equation can not be solved in a closed-form.

We first consider the solution of a linear superconductor for n, > nnWr.

I cosh(x/A) (22)Jy(x) = 2, ihd2)for <x d/2 (2
2A sinh(d/2A)

and

H,(x) = - I sinh(x/A) for <xI <d/2. (23)
2 sinh(d/2A)(
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An iterative scheme for solving the nonlinear problem is to initially use the linear solution

Jy(x) in eq. (22) to calculate ns(J) in eq. (8) and A(x) in eq. (11). Then A in eq. (22) is

substituted with the A(x) obtained to calculate Jy(x). Then eq. (8) is used to calculate

ns[Jy(x)] again. This procedure is repeated until Jy(x) converges. Figure 8 shows the

results of J(x) and as(x) obtained from the iterative method.

The impedance of the slab is defined as

Z = d2(24)

f'd12 dx&(x)

and resistance R = Re(Z) and kinetic inductance Lk = -Im(Z)/w. Figure 9 shows the

R - I and Lk - I relations from the final convergent J4(x).

For different thickness d, the nonlinear curve will be different. We have found that for

smaller d/A, R - I and Lk - I relations are more nonlinear. This is understandable since

J. is bigger for smaller d for a given applied current I.

Surface impedance of a superconductor is defined as

0 =(25)

where
i&(J)

= + & (26)

Surface resistance is R, = Rc(Zs), and surface inductance is Ls = -Im(Zs)/w. For wr =

10-3, R, and L, are plotted in Figure 10. The nonlinear region appears near Je where the

sample is partially superconducting. In the normal or superconducting states, the relations

are linear. The Ls is different at normal and superconducting regions. Experimental

results [13] are compared in Figure 11. As it shows, this model agrees with the trend

of the experimental results. Since some parameters (a, r, etc.) are material dependent.
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by adjusting these parameters, a better fit between the theory and measurement may be

found. Surface impedance Z. is a good description of superconductors since most of the

currents and fields are confined within the penetration depth A from the surface.

Another case of interest is at very high frequencies and on for T > T, is not very big

(which is true for the ceramic high T, superconductors) so that e can not be neglected in

eq. (26) for Jy near Jc. Since T' 6 0 in the Maxwell's equations, a wave equation has to

be considered. We will solve the guided wave case where the electric field Ey is decaying

away outside the slab.

The wave equation for E is

V2 E + k~rE = 0 (27)

where

io*(J)
i-r = 1 + -- (28)

If we replace E by aJy in eq. (27), (27) will look very similar to (21). We can also use

an iterative scheme to solve for the nonlinear & case. First, we assume a is indeplendent

of J and solve for Jy(x). Second, we calculate a(x) = a[Jy(x)]. Third, we solve the wave

equation for the inhomogencous medium problem and obtain Jy(x). These steps will he

repeated until Jy(x) and &(x) converge. This is a feed-back process. At the edge, increase

in Jy will cause ns to decrease, which causes a,, and hence Jy to decrease. This will

continue until the a stable solution is obtained.

This procedure is similar to solving coupled two differential equations in the GL theory

where the equation for ;T is essentially the same as the wave equation (27) for E or

The difference is the second equation for i/,, where i,(A) (ns(J) ) is to be derived. We have

derived ns(J) in this paper from tile velocity distribution assumption.
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The results for the slab geometry can be used to study a microstrip geometry. If the

dimension of z in Figure 7 is reduced to d < A, the current will still be uniform in the z

direction. Therefore, the same results can be applied.

This nonlinear model can also be applied to study the dependence of R and L on the

magnetic field H. Once the relation between the magnetic field H and the current. J is

determined, Hc and Jc can be related and the above discussion is directly applicable.

Although the model presented is classical, the corresponding quantum statistical dist ribu-

tion can be used to derive the velocity (energy) distribution. Discrete distribution may be

needed if the energy is quantized.

V1. Conclusion

A macroscopic model is proposed for nonlinear constitutive relations in superconductors.

Distribution of electron velocities is used to derive the dependence of superelectron density

ns on applied macroscopic current density J. Complex &(J) is obtained. The geometry of a

superconductor will introduce non-uniform distribution of the current density J. Thercfore.

nonlinearity will be enhanced at the edges and surfaces of superconductors. Using this

macroscopic model, a solution scheme for electromagnetic properties of supercondiictors

has been proposed.
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Figure Captions

Fig. 1. An assumed distribution of electron velocities for T = 20 K.

Fig. 2. Superelectron number density n.(J)/n0 at different temperatures. In this example.

a = 3/2, and Tc = 90K. Jc(O) is from eq. (7).

Fig. 3. Comparison between the two-fluid model and this model for ns(T)/no at J = 0.

Here a = 3/2 and Tc = 90 K.

Fig. 4. Penetration depth A as a function of current density J at T = 88K. Here T, = 90

K.

Fig. 5. At T = 88K, Tc = 90K, (a) super-conductivity a, as a function of J. (b) normal

conductivity an as a function of J.

Fig. 6. At T = 88K, Tc = 90K, (a) resistance of a thin wire R as a function of .J. (1)

kinetic inductance Lk of a thin wire as a function of J.

Fig. 7. A superconducting slab with a thickness d.

Fig. 8. At T = 80K, T, = 90K, d/A(J = 0) = 2, (a) current density Jy(x) distribution in

a slab. (b) super-conductivity as(x) distribution in a slab.

Fig. 9. For d/A(J = 0) = 0.5, 1, 2, Tc = 90K, (a) resistance of a slab, R, as a function of

applied current intensity I at T = 80K; (b) kinetic inductance Lk of a slab as a finction

of applied current intensity I at T = 80K. Here T, = 90K.

Fig. 10. At T = 88K, T, = 90K, (a) Surface resistance R, as a function of J, (b) sturfaco



inductance Ls as a function of J.

Fig. 11 R8 as a function of surface current density K at T = 77K. The circles are the

measured data from reference [131. The sample is a YBCO at f = 10.4GHz with Tc = 92K.

The solid curve is from this model, where a = 3/2, and wr = 2.8 x 10-2. The surface

current density is calculated from J with a thickness of A(J).
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